寻找两个正序数组的中位数
给定两个大小分别为 m
和 n
的正序(从小到大)数组 nums1
和 nums2
。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n))
。
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int totalLength = nums1.length + nums2.length;
if (totalLength % 2 == 1) {
return getKthElement(nums1, nums2, totalLength / 2 + 1);
} else {
return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;
}
}
public int getKthElement(int[] nums1, int[] nums2, int k) {
/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
* 这里的 "/" 表示整除
* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
* 这样 pivot 本身最大也只能是第 k-1 小的元素
* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
*/
int length1 = nums1.length, length2 = nums2.length;
int idx1 = 0, idx2 = 0;
while (true) {
if (idx1 == length1) {
return nums2[idx2 + k - 1];
}
if (idx2 == length2) {
return nums1[idx1 + k - 1];
}
if (k == 1) {
return Math.min(nums1[idx1], nums2[idx2]);
}
int half = k / 2;
int newIdx1 = Math.min(idx1 + half, length1) - 1;
int newIdx2 = Math.min(idx2 + half, length2) - 1;
if (nums1[idx1] <= nums2[idx2]) {
idx1 = newIdx1 + 1;
k -= (newIdx1 - idx1 + 1);
} else {
idx2 = newIdx2 + 1;
k -= (newIdx2 - idx2 + 1);
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
编辑 (opens new window)
上次更新: 2023/04/09, 16:34:32